
Design

Chapter 9

Julian M. Bass

Agile Software Engineering Skills

• We've established requirements

• What our system must do (Chapter 7)

• We’ve created a high-level structure

• Adopted an architectural style and created a reference architecture
(Chapter 8)

• Now we can design specific features

Introduction

• We will create class diagrams and object sequence
diagrams to understand

• How our software will be structured

• How the moving parts interact during run-time

• Implement design patterns to solve recurring problems

Introduction

• Feature Driven Development

• System Modelling

• Class Diagrams

• Object Sequence Diagrams

• Technology Stack Selection

• Model-driven Engineering

Contents

• Features are independent pieces of functionality

• Provide end-to-end services to external actors

• Features provide value to customers

• End-to-end fulfilment of a user need

• Client, business logic and persistence

• Incremental development consists of implementing
features, one after another

Feature Driven Development

• Features comprise working code

• We create acceptance tests for features

• We can demonstrate features and get feedback

• Clients or users should be able to understand the goal

Feature Driven Development

• Develop visual representations of the system

• Models use graphical notations

• Often based on one of the Unified Modelling Languages (UML)

• Models stimulate discussion, and ultimately consensus

• On what something does or how something works

• Models record decisions about design

System Modelling

• Two main types of model: static and dynamic

• Static models depict unchanging internal structure

• Dynamic models depict run-time behaviour

• Models of the world as it exists

• Before our system is implemented.

• As Is or domain models

• Models that describe the proposed new system

• To Be models

System Modelling

• Structural models

• Current environment

• Organisation of a system

• Components that make up a system

• Their relationships with each other

Class Diagrams

• Deriving Class Diagrams

• Noun and Noun Phrases that describe a person, place, thing, quality
or idea

• Implemented in software as data items (attributes), data structures or classes

• Verb and Verb Phrases describe actions

• Implemented as methods or operations

Class Diagrams

Class Diagrams

© Springer Nature Switzerland AG 2022

J. M. Bass, Agile Software Engineering Skills,

https://doi.org/10.1007/978-3-031-05469-3_9

• Domain models

• As Is models of system context

• High-level design models

• Outline diagrams of classes and their relationships and attributes

• Detailed design models

• Include method signatures and attribute data types

Class Diagrams

Class Diagrams

© Springer Nature Switzerland AG 2022

J. M. Bass, Agile Software Engineering Skills,

https://doi.org/10.1007/978-3-031-05469-3_9

• Interactions between actors and system objects

• Usually correspond to a specific use case

• Model dynamic (run-time) interactions between
components

Object Sequence Diagrams

Object Sequence Diagrams

© Springer Nature Switzerland AG 2022

J. M. Bass, Agile Software Engineering Skills,

https://doi.org/10.1007/978-3-031-05469-3_9

• Reusable descriptions of abstract design fragments

• Solve problems that re-occur in applications

• Provide best practice solutions

• Comprises description of problem and essence of
solution

• Patterns enable design reuse

Design Patterns

• Singleton Pattern

• Ensures only one instance of the class is created

• To instantiate…

Design Patterns

SingletonObject so = SingletonObject.getInstance();

System.out.println(so.showMessage());

Design Patterns

public class SingletonObject {

/* Make the instance private and static */

private static SingletonObject instance = new SingletonObject();

/* Make the constructor private */

private SingletonObject() {

}

/* Use this method to return the instantiated object */

public static SingletonObject getInstance() {

return instance;

}

public String showMessage() {

return "This is from the singleton";

}

}

• Model View Controller

• Manage data (model) separately from the display (view) of information

• Controller class manages interaction between views and model

• Good separation of concerns

• Can change underlying persistence implementation (model) without affecting rest
of system

• Can implement various client (views) without affecting model

Design Patterns

Design Patterns

© Springer Nature Switzerland AG 2022

J. M. Bass, Agile Software Engineering Skills,

https://doi.org/10.1007/978-3-031-05469-3_9

• Factory Pattern

• Creates and returns objects of a particular type

• Single point in the system for instantiating a family of similar objects

• Simplifies maintenance in sophisticated systems

• Simple example

• Bass, J. (2022). Julianbass/CarFactory [Java]. https://github.com/julianbass/CarFactory (Original work
published 2021)

Design Patterns

https://github.com/julianbass/CarFactory

• Selecting project implementation technologies

• Programming languages, frameworks, libraries, development
environments and deployment environments

• In commercial sector, joining an existing project

• You probably won't get much say

• In an academic, HackCamp or Hackathon
environment,

• Choosing the technology stack important decision

Technology Stack Selection

• Consider how candidate technologies

• Impact your chosen delivery model

• installable desktop application, web app, cloud-hosted service etc.

• Impact your functional and non-functional requirements

• Contribute to achieving your architectural goals

• Impact your product/project goals

• Identify the team member skill set

• Collect evidence and assess the Pros/Cons of the
technologies your team members know

Technology Stack Selection

• Automatically generate a complete or partial system from
our system models

• Integrated development environments can generate
skeleton classes and certain methods

• Accessor and mutator methods

• Constructor method skeletons

• Commercially available database design tools

• Draw diagrams which are then automatically implemented as database
tables

Model-driven Engineering

• Exercises 9.1 and 9.7 encourage creation of a learning journal

• Exercises 9.2 – 9.5 Cover class diagrams

• Exercise 9.6 Covers factory pattern implementation

Exercises

• Architecture in Agile

• Avoid Big Design Up Front

• Refactoring to refine architecture as product matures

• Design Styles

• Client-Server

• Repository Architecture

• Pipe and Filter

• Layered Architecture

Summary

