University of

Salford

MANCHESTER REDocelot

Agile Software Engineering Skills

Architecture
Chapter 8

Julian M. Bass




University of

Salford

MANCHESTER

REDocelot

Introduction

« Software structuring to

« Achieve software requirements

 Manage change by reducing dependencies between one part of the
system and another

« Enable team members to work on different parts of the project at the
same time

* Wil explore

« Client-server, pipe and filter and layered architectures as well as
« Design patterns such as the model-view controller




University of
Salford v

MANCHESTER REDocelot

Introduction

* Architecture Is a process

« Creative and design activities involved in making an architecture or
system structure

 Architecture Is an artefact

« One or more outputs or deliverables

« Set of architecture design models that describe how the system is
organised

« Arecord of decisions made




University of
Salford

MANCHESTER REDocelot

Introduction

* Architectural design

« Happens early in the development process

« Overlaps with requirements gathering

* Needs rework if new non-functional requirements are revealed
« Requires consultation with stakeholders




university of v
Salford

MANCHESTER REDocelot

Contents

« Architecture in Agile
Design Styles

« Client-Server

« Repository Architecture
* Pipe and Filter

« Layered Architecture

Reference Architectures
Design Principles
Architecture Implementation




University of
Salford

MANCHESTER REDocelot

Architecture in Agile

* Too much architecture design prior to starting
development work on functionality

 Known as big design up-front
* |nvest effort without developing working code
 Difficult to evaluate architecture until implemented

« Better to iInvest minimum effort required to get you up
and running




University of
Salford '

MANCHESTER REDocelot

Architecture in Agile

» Refactoring

* Re-structure and re-organise system without changing any functionality
« Tidy up the structure of system from time to time
* Include refactoring tasks in backlogs of work items

« Rework

 Not the same as refactoring
 Repeating same work, because it was poorly done first time
 Rework is a sign of poor quality craft




University of
Salford

MANCHESTER REDocelot

Architecture in Agile

* Planned Refactoring

« Create a roadmap for re-architecting for significant new features
« Consider and explain the need for architecture re-design
« Think carefully about the implications of non-functional requirements

 Architectural Abstraction

« Low-level architecture is about the structure of individual services
« Enterprise architectures comprise systems of systems
« Use architecture to clarify different levels of abstraction



University of

Salford

MANCHESTER

Design Styles

 J

REDocelot

* Reusable structures that recur in specific types of

application

 Implies a set of ru

« Structure of comp
understand

es that team members follow
ex system is simpler to explain and

* On-boarding new team members Is easier

« Example of architectural reuse



University of
Salford v

MANCHESTER REDocelot

Design Styles

* Improves separation of concerns and hence
maintainability

« Components can be replaced without disrupting the rest of the system

 Avolds redundant software source code

 Team members can work on different components at
the same time



University of
Salford

MANCHESTER REDocelot

Design Styles

 Client-Server

Common to access software services using internet technologies
One or more servers provide services to clients

Clients might include mobile device applications (Mobile Apps) or web
browsers

Services replicated on multiple servers

« Supports increased loads
 Redundancy for resilience

Performance subject to network bandwidth and difficult to predict



University of

Salford

MANCHESTER

Design Styles

Client1

 J

REDocelot

Client2

Server 1

Client3

Server 2

Clientm

Server n

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_8



University of
Salford v

MANCHESTER REDocelot

Design Styles

* Repository Architecture

* |Interactions between components happen through repository data
transfers

« Useful in data intensive applications, where a consistent view of
shared data is required by all components

« Components do not need to be aware of each other
« Centralised storage model simplifies backup and data archiving
« Repository is single point of failure



University of

Salford

MANCHESTER

Design Styles

Component 3

\

Component 4

e

Component 2

Repository

4+—»| Component5

a

Component 1

™,

Componentn

 J

REDocelot

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_8



University of
Salford

MANCHESTER REDocelot

Design Styles

* Pipe and Filter

« Chain of transformation components
« Each process input data to produce some output
« Organise the transformation flow into discrete processing stages

Transformation Transformation Transformation Transformation
1 2 3 .- n

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering SkKills,
https://doi.org/10.1007/978-3-031-05469-3_8




University of
Salford

MANCHESTER REDocelot

Design Styles

« Layered Architecture

« Related functionality is grouped into a series of levels

« Each layer provides services to the layer above

« Data can flow down through the layers; as well as up

« Requires discipline to ensure everyone adheres to the model




University of
Salford v

MANCHESTER REDocelot

Design Styles

Client-side Presentation Layer

' 1

Server-side Presentation Layer

' 1

Application Logic Layer

' I

Persistence Layer

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering SkKills,
https://doi.org/10.1007/978-3-031-05469-3_8




University of
Salford
MANCHESTER

REDocelot

Design Styles

 Clean Architecture

« Onion ring perspectives with the interfaces around the outside

« Web, databases, devices and other external interfaces form a ring around the
outside

« Then aring for our gateways and controllers

 Followed by use cases which encapsulate application specific functionality and
business rules

* Inthe centre, are entities which comprise abstract enterprise logic

* More freqguent change tends to occur on outer rings




University of

Salford

MANCHESTER REDocelot

Design Styles

(1) User Interface
(Browser) Request

(2) Resultant
Database Call

@ @

@ ®

Entities

Controllers &
Gateways

Web, Databases & Increasing Risk

Increasing
External Interfaces Of Change

Abstraction Levels

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_8




University of
Salford

MANCHESTER REDocelot

Reference Architectures

* Highly documented skeleton of the overall system

* |nclude examples of using specific interfaces, APIs or
services In the system

o Useful for

* Induction of new members to the team
« Ensuring everyone understands the rules or conventions



University of
Salford v

MANCHESTER REDocelot

Design Principles

« SOLID

* Single-responsibility
« Every class should have only one responsibility
* Only be one reason to change a class
« Expression of high cohesion within a class
 Open—closed

« Classes are open for extension but closed for modification
« Use generalisations, such as inheritance or delegate functions, to extend classes




University of
Salford

MANCHESTER REDocelot

Design Principles

« SOLID

 Liskov substitution

« Design by contract

« Children classes, that inherit properties from parents, can be substitutable for
parents

* Interface segregation

* Achieve cohesive user interface design by developing role-based interfaces
« Decouples different clients to simplify software maintenance and evolution

 Dependency inversion
* Introduce indirection between components, using interfaces or abstract classes



University of

Salford

MANCHESTER

Design Principles

A) Conventional Layer Pattern

Server-side
Presentation
Layer

B) Dependency inversion pattern

Server-side
Presentation
Layer

Application
Logic Layer

<<Interface>>
Application
Logic Interface

t
|
]

Application
Logic Layer

Persistence
Layer

<<Interface>>
Persistence
Interface

4
|
|

Persistence
Layer

REDocelot

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering SkKills,
https://doi.org/10.1007/978-3-031-05469-3_8



University of

Salford

MANCHESTER

REDocelot

Architecture Implementation

« Select an architectural style

* Create a simple structure that everyone can use
* Build a reference architecture

« Assess and perhaps validate the chosen design style
« |llustrates the interfaces between main components

* Then, start designing features within the reference
architecture




University of
Salford v

MANCHESTER REDocelot

Exercises

Exercises 8.1 and 8.5 encourage creation of a learning journal

Exercise 8.2 Covers pipes and filters architectural style
« Simple GitHub example

Bass, J. (2022). PipeAndFilterExample [Java]. (Original work
published 2021)

Exercise 8.3 Covers layered architectural style
« Simple GitHub example

Bass, J. (2022). LayeredArchitectureExample [Java].
(Original work published 2022)

Exercise 8.4 Covers programming language choice


https://github.com/julianbass/PipeAndFilterExample
https://github.com/julianbass/LayeredArchitectureExample

university of v
Salford

MANCHESTER REDocelot

Summary

* Architecture in Agile

« Avoid Big Design Up Front
« Refactoring to refine architecture as product matures

* Design Styles

« Client-Server

* Repository Architecture
* Pipe and Filter

« Layered Architecture




University of

Salford

MANCHESTER

 J

REDocelot

Summary

« Reference Architectures

 Record design decisions

* Design Principles
+ SOLID

* Architecture Implementation

* Implement simple skeleton, then build functionality




