
Architecture

Chapter 8

Julian M. Bass

Agile Software Engineering Skills



• Software structuring to 

• Achieve software requirements

• Manage change by reducing dependencies between one part of the 
system and another

• Enable team members to work on different parts of the project at the 
same time

• Will explore

• Client-server, pipe and filter and layered architectures as well as 

• Design patterns such as the model-view controller

Introduction



• Architecture is a process

• Creative and design activities involved in making an architecture or 
system structure

• Architecture is an artefact

• One or more outputs or deliverables 

• Set of architecture design models that describe how the system is 
organised

• A record of decisions made

Introduction



• Architectural design 

• Happens early in the development process

• Overlaps with requirements gathering

• Needs rework if new non-functional requirements are revealed

• Requires consultation with stakeholders

Introduction



• Architecture in Agile

• Design Styles

• Client-Server

• Repository Architecture

• Pipe and Filter

• Layered Architecture

• Reference Architectures

• Design Principles

• Architecture Implementation

Contents



• Too much architecture design prior to starting 
development work on functionality

• Known as big design up-front

• Invest effort without developing working code

• Difficult to evaluate architecture until implemented

• Better to invest minimum effort required to get you up 
and running

Architecture in Agile



• Refactoring

• Re-structure and re-organise system without changing any functionality

• Tidy up the structure of system from time to time

• Include refactoring tasks in backlogs of work items

• Rework

• Not the same as refactoring

• Repeating same work, because it was poorly done first time

• Rework is a sign of poor quality craft

Architecture in Agile



• Planned Refactoring

• Create a roadmap for re-architecting for significant new features

• Consider and explain the need for architecture re-design

• Think carefully about the implications of non-functional requirements

• Architectural Abstraction

• Low-level architecture is about the structure of individual services

• Enterprise architectures comprise systems of systems

• Use architecture to clarify different levels of abstraction

Architecture in Agile



• Reusable structures that recur in specific types of 
application

• Implies a set of rules that team members follow

• Structure of complex system is simpler to explain and 
understand

• On-boarding new team members is easier

• Example of architectural reuse

Design Styles



• Improves separation of concerns and hence 
maintainability

• Components can be replaced without disrupting the rest of the system

• Avoids redundant software source code

• Team members can work on different components at 
the same time

Design Styles



• Client-Server

• Common to access software services using internet technologies

• One or more servers provide services to clients

• Clients might include mobile device applications (Mobile Apps) or web 
browsers

• Services replicated on multiple servers 

• Supports increased loads

• Redundancy for resilience

• Performance subject to network bandwidth and difficult to predict

Design Styles



Design Styles

© Springer Nature Switzerland AG 2022

J. M. Bass, Agile Software Engineering Skills,

https://doi.org/10.1007/978-3-031-05469-3_8



• Repository Architecture

• Interactions between components happen through repository data 
transfers

• Useful in data intensive applications, where a consistent view of 
shared data is required by all components

• Components do not need to be aware of each other

• Centralised storage model simplifies backup and data archiving

• Repository is single point of failure

Design Styles



Design Styles

© Springer Nature Switzerland AG 2022

J. M. Bass, Agile Software Engineering Skills,

https://doi.org/10.1007/978-3-031-05469-3_8



• Pipe and Filter

• Chain of transformation components

• Each process input data to produce some output

• Organise the transformation flow into discrete processing stages

Design Styles

Transformation 

1

Transformation 

2

Transformation 

3

Transformation 

n…

© Springer Nature Switzerland AG 2022

J. M. Bass, Agile Software Engineering Skills,

https://doi.org/10.1007/978-3-031-05469-3_8



• Layered Architecture

• Related functionality is grouped into a series of levels

• Each layer provides services to the layer above

• Data can flow down through the layers; as well as up

• Requires discipline to ensure everyone adheres to the model

Design Styles



Design Styles

Persistence Layer

Application Logic Layer

Server-side Presentation Layer

Client-side Presentation Layer

© Springer Nature Switzerland AG 2022

J. M. Bass, Agile Software Engineering Skills,

https://doi.org/10.1007/978-3-031-05469-3_8



• Clean Architecture

• Onion ring perspectives with the interfaces around the outside

• Web, databases, devices and other external interfaces form a ring around the 
outside

• Then a ring for our gateways and controllers

• Followed by use cases which encapsulate application specific functionality and 
business rules

• In the centre, are entities which comprise abstract enterprise logic

• More frequent change tends to occur on outer rings

Design Styles



Design Styles

© Springer Nature Switzerland AG 2022

J. M. Bass, Agile Software Engineering Skills,

https://doi.org/10.1007/978-3-031-05469-3_8



• Highly documented skeleton of the overall system

• Include examples of using specific interfaces, APIs or 
services in the system

• Useful for 

• Induction of new members to the team

• Ensuring everyone understands the rules or conventions

Reference Architectures



• SOLID

• Single-responsibility

• Every class should have only one responsibility

• Only be one reason to change a class 

• Expression of high cohesion within a class

• Open–closed

• Classes are open for extension but closed for modification

• Use generalisations, such as inheritance or delegate functions, to extend classes

Design Principles



• SOLID

• Liskov substitution

• Design by contract

• Children classes, that inherit properties from parents, can be substitutable for 
parents

• Interface segregation

• Achieve cohesive user interface design by developing role-based interfaces

• Decouples different clients to simplify software maintenance and evolution

• Dependency inversion

• Introduce indirection between components, using interfaces or abstract classes

Design Principles



Design Principles

© Springer Nature Switzerland AG 2022

J. M. Bass, Agile Software Engineering Skills,

https://doi.org/10.1007/978-3-031-05469-3_8



• Select an architectural style

• Create a simple structure that everyone can use

• Build a reference architecture

• Assess and perhaps validate the chosen design style

• Illustrates the interfaces between main components

• Then, start designing features within the reference 
architecture

Architecture Implementation



• Exercises 8.1 and 8.5 encourage creation of a learning journal

• Exercise 8.2 Covers pipes and filters architectural style

• Simple GitHub example 
• Bass, J. (2022). PipeAndFilterExample [Java]. https://github.com/julianbass/PipeAndFilterExample (Original work 

published 2021)

• Exercise 8.3 Covers layered architectural style

• Simple GitHub example 
• Bass, J. (2022). LayeredArchitectureExample [Java]. https://github.com/julianbass/LayeredArchitectureExample

(Original work published 2022)

• Exercise 8.4 Covers programming language choice

Exercises

https://github.com/julianbass/PipeAndFilterExample
https://github.com/julianbass/LayeredArchitectureExample


• Architecture in Agile

• Avoid Big Design Up Front

• Refactoring to refine architecture as product matures

• Design Styles

• Client-Server

• Repository Architecture

• Pipe and Filter

• Layered Architecture

Summary



• Reference Architectures

• Record design decisions

• Design Principles

• SOLID

• Architecture Implementation

• Implement simple skeleton, then build functionality

Summary


